cm²/V.sec, we obtain an electron conventration of 10^{16} to 10^{20} . For such carrier concentrations we ought easily to have been able to determine the Hall constant, since for magnetic fields of H = 22,000 Oe and a current of 1 A in a sample 0.1 cm thick the Hall emf E = 1.4.10⁻² V, since for....the Hall constant R = $6.3 \text{ cm}^3/\text{C}$. We could easily have measured a value of E = $1.4.10^{-2}$ V, since out apparatus had a sensitivity of 2.10^{-8} V.

Fig. 1.

Fig. 2.

Key

1) Oe

of Chromium Sulfides. Measurements of this effect showed that,

SOLIC AR/R

WHAT FOR COMPOSITIONS OF ...at.% S/had an extremely small value,

beyond the sensitivity of our apparatus. Exceptions were
chromium sulfides with a sulfur excess (58 to 59 at.%), for which

we were able to measure the change of resistance in a magnetic

field; however,had a negative sign, i.e., it behaved an
omalously (see Fig. 2).

The only previous example of a fall in resistance in a magnetic field was tellurium (a semimetal), as indicated by R. A. Chentsov /3/.

The immeasurably small values of the Hall effect in chromium sulfides with sulfur contents of....at, % and also the absence of any influence of magnetic field on the electrical resistance of